^

Здоровье

A
A
A

Молекулярно-генетические методы диагностика наследственных заболеваний

 
, медицинский редактор
Последняя редакция: 23.04.2024
 
Fact-checked
х

Весь контент Web2Health проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

 

Методы ДНК-технологии используют для выяснения локализации в той или иной хромосоме мутантного гена, ответственного за происхождение определённых форм наследственной патологии. Так как ген представляет собой участок ДНК, а мутация генов - повреждение первичной структуры ДНК (под мутацией понимают все изменения в последовательности ДНК, независимо от их локализации и влияния на жизнеспособность индивида), то, зондируя препараты метафазных хромосом больного с наследственным заболеванием, удаётся установить локализацию патологического гена. Методы молекулярной генетики создают возможности для диагностики болезней на уровне изменённой структуры ДНК, они позволяют выяснять локализацию наследственных нарушений. Молекулярно-генетические методы могут выявить мутации, связанные с заменой даже одного-единственного основания.

Важнейший этап идентификации гена - его выделение. ДНК может быть изолирована из любого типа тканей и клеток, содержащих ядра. Этапы выделения ДНК включают: быстрый лизис клеток, удаление с помощью центрифугирования фрагментов клеточных органелл и мембран, ферментативное разрушение белков и их экстрагирование из раствора с помощью фенола и хлороформа, концентрирование молекул ДНК путём преципитации в этаноле.

В генетических лабораториях ДНК чаще всего выделяют из лейкоцитов крови, для чего у пациента забирают 5-20 мл венозной крови в стерильную пробирку с раствором антикоагулянта (гепарин). Затем отделяют лейкоциты и проводят их обработку по изложенным выше этапам.

Следующий этап подготовки материала к исследованию - «разрезание» ДНК на фрагменты в участках со строго специфической последовательностью оснований, которое осуществляют с помощью бактериальных ферментов - рестрикционных эндонуклеаз (рестриктаз). Рестриктазы узнают специфические последовательности из 4-6, реже 8-12 нуклеотидов в двухцепочечной молекуле ДНК и разделяют её на фрагменты в местах локализации этих последовательностей, называемых сайтами рестрикции. Количество образующихся рестрикционных фрагментов ДНК определяется частотой встречаемости сайтов рестрикции, а размер фрагментов - характером распределения этих сайтов по длине исходной молекулы ДНК. Чем чаще расположены сайты рестрикции, тем короче фрагменты ДНК после рестрикции. В настоящее время известно более 500 различных типов рестриктаз бактериального происхождения, и каждый из этих ферментов узнаёт свою специфическую последовательность нуклеотидов. В дальнейшем сайты рестрикции могут быть использованы в качестве генетических маркёров ДНК. Образовавшиеся в результате рестрикции фрагменты ДНК могут быть упорядочены по длине путём электрофореза в агарозном или полиакриламидном геле, а тем самым может быть определена их молекулярная масса. Обычно для выявления ДНК в геле используется специфическое окрашивание (чаще бромидом этидия) и просмотр геля в проходящем свете ультрафиолетовой области спектра. Места локализации ДНК имеют красную окраску. Однако у человека при обработке ДНК несколькими рестриктазами образуется так много фрагментов различной длины, что их не удаётся разделить с помощью электрофореза, то есть не удаётся визуально идентифицировать отдельные фрагменты ДНК на электрофореграмме (получают равномерное окрашивание по всей длине геля). Поэтому для идентификации нужных фрагментов ДНК в таком геле используют метод гибридизации с мечеными ДНК-зондами.

Любой одноцепочечный сегмент ДНК или РНК способен связываться (гибридизироваться) с комплементарной ему цепью, причём гуанин всегда связывается с цитозином, аденин с тимином. Так происходит образование двухцепочечной молекулы. Если одноцепочечную копию клонированного гена пометить радиоактивной меткой, получится зонд. Зонд способен отыскивать комплементарный сегмент ДНК, который затем легко идентифицировать с помощью радиоавтографии. Радиоактивный зонд, добавленный к препарату растянутых хромосом, позволяет локализовать ген на определённой хромосоме: с помощью ДНК-зонда можно идентифицировать определённые участки при саузерн-блоттинге. Гибридизация происходит, если тестируемый участок ДНК содержит нормальный ген. В случае, когда присутствует ненормальная последовательность нуклеотидов, то есть соответствующие структуры хромосомы содержат мутантный ген, гибридизация не произойдёт, что позволяет определить локализацию патологического гена.

Для получения ДНК-зондов используют метод клонирования генов. Сущность метода состоит в том, что фрагмент ДНК, соответствующий какому-либо гену или участку гена, встраивают в клонирующую частицу, как правило, бактериальную плазмиду (кольцевая внехромосомная ДНК, присутствующая в клетках бактерий и несущая гены устойчивости к антибиотикам), и затем бактерии, имеющие плазмиду со встроенным человеческим геном, размножают. Благодаря процессам синтеза в плазмиде удаётся получить миллиарды копий человеческого гена или его участка.

В дальнейшем полученные копии ДНК, меченные радиоактивной меткой или флюорохромами, используют в качестве зондов для поиска комплементарных последовательностей среди исследуемого пула молекул ДНК.

В настоящее время существует множество разновидностей методов с использованием ДНК-зондов для диагностики генных мутаций.

trusted-source[1], [2], [3], [4], [5], [6], [7],

Сообщите нам об ошибке в этом тексте:
Просто нажмите кнопку "Отправить отчет" для отправки нам уведомления. Так же Вы можете добавить комментарий.