^

Здоровье

A
A
A

Рентген исследование функции легких

 
, медицинский редактор
Последняя редакция: 19.10.2021
 
Fact-checked
х

Весь контент Web2Health проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

 

Функциональная система дыхания состоит из множества звеньев, среди которых особое значение имеют системы легочного (внешнего) дыхания и кровообращения. Усилиями дыхательной мускулатуры вызываются изменения объема грудной клетки и легких, обеспечивающие их вентиляцию. Вдыхаемый воздух благодаря этому распространяется по бронхиальному дереву, достигая альвеол. Естественно, нарушения бронхиальной проходимости ведут к расстройству механизма внешнего дыхания. В альвеолах происходит диффузия газов через альвеолярно-капиллярную мембрану. Процесс диффузии нарушается как при поражении стенок альвеол, так и при нарушении капиллярного кровотока в легких.

По обычным рентгенограммам, произведенным в фазы вдоха и выдоха, и при рентгеноскопии можно составить ориентировочное представление о механике дыхательного акта и вентиляции легких. При вдохе передние концы и тела ребер поднимаются, межреберные промежутки расширяются, диафрагма опускается (особенно за счет ее мошного заднего ската). Легочные поля увеличиваются, а прозрачность их возрастает. При необходимости все эти показатели могут быть измерены. Более точные данные получают при КТ. Она позволяет определить размеры грудной полости на любом уровне, вентиляционную функцию легких в целом и в любых их отделах. По компьютерным томограммам можно измерить поглощение рентгеновского излучения на всех уровнях (произвести денситометрию) и тем самым получить суммарные сведения о вентиляции и кровенаполнении легких.

Нарушения проходимости бронхов вследствие изменения их тонуса, накопления мокроты, отека слизистой оболочки, органических сужений наглядно отражаются на рентгенограммах и компьютерных томограммах. Различают три степени нарушения бронхиальной проходимости - частичное, клапанное, полное и соответственно три состояния легкого - гиповентиляцию, обтурационную эмфизему, ателектаз. Небольшое стойкое сужение бронха сопровождается снижением содержания воздуха в вентилируемой этим бронхом части легкого - гиповентиляцией. На рентгенограммах и томограммах данная часть легкого слегка уменьшается, становится менее прозрачной, рисунок в ней усиливается вследствие сближения сосудов и полнокровия. Средостение на вдохе может немного смещаться в сторону гиповентиляции.

При обтурационной эмфиземе воздух во время вдоха, когда бронх расширяется, проникает в альвеолы, но при выдохе не сразу может выйти из них. Пораженная часть легкого увеличивается и становится светлее окружающих отделов легкого, особенно в период выдоха. Наконец, при полном закрытии просвета бронха возникает полная безвоздушность - ателектаз. Воздух уже не может проникнуть в альвеолы. Оставшийся в них воздух подвергается рассасыванию и частично заменяется отечной жидкостью. Безвоздушный участок уменьшается и обусловливает интенсивную однородную тень на рентгенограммах и компьютерных томограммах.

При закупорке главного бронха возникает ателектаз всего легкого. Закупорка долевого бронха ведет к ателектазу доли. Непроходимость сегментарного бронха завершается ателектазом сегмента. Субсегментарные ателектазы обычно имеют форму узких полосок в разных отделах легочных полей, а дольковые - округлых уплотнений диаметром 1 - 1,5 см.

Однако основным лучевым способом исследования физиологии и выявления функциональной патологии легких стал радионуклидный метод - сцинтиграфия. Она позволяет оценить состояние вентиляции, перфузии и легочного капиллярного кровотока, причем получить как качественные, так и количественные показатели, характеризующие поступление газов в легкие и их выведение, а также обмен газов между альвеолярным воздухом и кровью в легочных капиллярах.

С целью исследования кашилярного легочного кровотока производят перфузионную сцинтиграфию, венгтшции и бронхиальной проходимости - ингаляционную сцинтиграфию. При обоих исследованиях получают радионуклидное изображение легких. Для выполнения перфузионной сцинтиграфии пациенту внутривенно вводят меченные 99mТс частицы аль6умина (микросферы или макроагрегаты). Попадая в кровоток, они уносятся в правое предсердие, правый желудочек и затем в систему легочной артерии. Размер частиц 20-40 мкм, что препятствует прохождению их через капиллярное русло. Практически 100 % микросфер застревает в капиллярах и испускает гамма-кванты, которые регистрируют с помощью гамма-камеры. Исследование не оказывает влияния на самочувствие пациента, поскольку из кровотока выключается лишь незначительная часть капилляров. У человека в легких имеется приблизительно 280 млрд капилляров, тогда как для исследования вводят всего 100-500 тыс. частиц. Через несколько часов после инъекции белковые частицы разрушаются энзимами крови и макрофагами.

С целью оценки перфузионных сцинтиграмм проводят качественный и количественный анализ. При качественном анализе определяют форму и размеры легких в 4 проекциях: передней и задней прямых, правой и левой боковых. Распределение РФП но легочным полям должно быть равномерным. При количественном анализе оба легочных поля на экране дисплея делят на три равные части: верхнюю, среднюю и нижнюю. Суммарное накопление РФП в обоих легких принимают за 100 %. На компьютере рассчитывают относительную радиоактивность, т.е. накопление РФП в каждом отделе легочного поля, отдельно левого и правого. В норме соответственно правому легочному полю регистрируется более высокое накопление - на 5-10 %, причем концентрация РФП по полю увеличивается сверху вниз. Нарушения капиллярного кровотока сопровождаются изменением указанных выше соотношений в накоплении РФП по полям и отделам легких.

Ингаляционную сцинтиграфию проводят с использованием инертных газов -Хе или Kr. В закрытую систему спирографа вводят воздушно-ксеноновую смесь. Используя загубник и носовой зажим, создают замкнутую систему спирограф - пациент. После достижения динамического равновесия на гамма-камере записывают сцинтиграфическое изображение легких и затем проводят его качественную и количественную обработку так же, как перфузионного. Участки нарушения вентиляции легких соответствуют местам сниженного накопления РФП. Это наблюдается при обструктивных поражениях легких: бронхите, бронхиальной астме, локальном пневмосклерозе, раке бронха и др.

Для ингаляционной сцинтиграфии применяют также аэрозоли 99mТс. При этом 1 мл РФП активностью 74-185 МБк вводят в распылитель ингалятора. Динамическую регистрацию производят со скоростью 1 кадр в 1 с в течение 15 мин. Строят кривую активность - время. На первом этапе исследования определяют состояние бронхиальной проходимости и вентиляции, при этом можно установить уровень и степень обструкции. На втором этапе, когда РФП диффундирует в кровяное русло через альвеолярно-капиллярную мембрану, оценивают интенсивность капиллярного кровотока и состояние мембраны. Измерение региональной легочной перфузии и вентиляции можно выполнить и путем внутривенного введения радиоактивного ксенона, растворенного в изотоническом растворе натрия хлорида, с последующей регистрацией очищения легких от ксенона на гамма-камере.

Сообщите нам об ошибке в этом тексте:
Просто нажмите кнопку "Отправить отчет" для отправки нам уведомления. Так же Вы можете добавить комментарий.