^

Здоровье

Медицинский эксперт статьи

Интернист, пульмонолог

Новые публикации

Препараты

Ингаляционные анестетики

, медицинский редактор
Последняя редакция: 23.04.2024
Fact-checked
х

Весь контент Web2Health проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Общая анестезия определяется как вызванная лекарственными веществами обратимая депрессия ЦНС, приводящая к отсутствию ответной реакции организма на внешние раздражители.

История применения ингаляционных анестетиков как средств общей анестезии началась с публичной демонстрации в 1846 г. первого эфирного наркоза. В 40-е годы вошли в практику динитроген оксид (Уэллс, 1844) и хлороформ (Симпсон, 1847). Указанные ингаляционные анестетики применяли до середины 50-х годов 20-го столетия.

В 1951 г. был синтезирован галотан, который стал использоваться в анестезиологической практике многих стран, в т.ч. и в отечественной. Примерно в те же годы был получен метоксифлуран, однако из-за слишком высокой растворимости в крови и тканях, медленной индукции, продолжительной элиминации и нефротоксичности ЛС в настоящее время имеет историческое значение. Гепатотоксичность галотана заставила продолжить поиск новых галогеносодержащих анестетиков, который в 70-е годы привел к созданию трех ЛС: энфлурана, изофлурана и севофлурана. Последний, несмотря на дороговизну, получил распространение из-за низкой растворимости в тканях и приятного запаха, хорошей переносимости и быстрой индукции. И наконец, последнее ЛС этой группы - десфлуран было внедрено в клиническую практику в 1993 г. Десфлуран имеет еще более низкую растворимость в тканях, чем севофлуран, и тем самым обеспечивает превосходный контроль за поддержанием анестезии. При сравнении с другими анестетиками этой группы десфлуран имеет самый быстрый выход из анестезии.

Совсем недавно, уже в конце XX века, в анестезиологическую практику вошел новый газообразный анестетик - ксенон. Этот инертный газ является естественным компонентом тяжелой фракции воздуха (на каждые 1000 м3 воздуха приходится 86 см3 ксенона). Применение ксенона в медицине до последнего времени ограничивалось областью клинической физиологии. Для диагностики заболеваний органов дыхания, кровообращения, органного кровотока использовали радиоактивные изотопы 127Хе и 111Хе. Наркотические свойства ксенона были предсказаны (1941 г.) и подтверждены (1946 г.) Н.В. Лазаревым. Первое применение ксенона в клинике относится к 1951 г. (S. Cullen и Е. Gross). В России применение ксенона и дальнейшее его изучение в качестве средства для наркоза связано с именами Л.А. Буачидзе, В.П. Смольникова (1962 г.), а в дальнейшем Н.Е. Бурова. Монография Н.Е. Бурова (совместно с В.Н. Потаповым и Г.А. Макеевым) «Ксенон в анестезиологии» (клинико-экспериментальное исследование), изданная в 2000 г., является первой в мировой анестезиологической практике.

В настоящее время ингаляционные анестетики используются в основном в период поддержания анестезии. Для целей вводного наркоза ингаляционные анестетики применяются только у детей. Сегодня в арсенале у анестезиолога имеются два газообразных ингаляционных анестетика - динитроген оксид и ксенон и пять жидких веществ - галотан, изофлуран, энфлуран, севофлуран и десфлуран. Циклопропан, трихлорэтилен, метоксифлуран и эфир не используются в клинической практике большинства стран. Диэтиловый эфир все еще находит применение в отдельных небольших больницах Российской Федерации. Удельный вес различных методов общей анестезии в современной анестезиологии составляет до 75% от общего количества анестезий, остальные 25% приходятся на различные варианты местной анестезии. Ингаляционные методы общей анестезии доминируют. В/в способы общей анестезии составляют примерно 20-25%.

Ингаляционные анестетики в современной анестезиологии используются не только как ЛС для мононаркоза, но и как компоненты общей сбалансированной анестезии. Сама идея - использовать малые дозы лекарств, которые будут потенцировать друг друга и дадут оптимальный клинический эффект, была достаточно революционна в эпоху мононаркоза. По сути дела, именно в это время был реализован принцип многокомпонентности современной анестезии. Сбалансированная анестезия решила главную проблему того периода - передозировку наркотического вещества из-за отсутствия точных испарителей.

Динитроген оксид использовали как основной анестетик, барбитураты и скополамин обеспечивали седацию, белладонна и опиаты тормозили рефлекторную деятельность, опиоиды вызывали аналгезию.

Сегодня для сбалансированной анестезии наряду с динитрогеном оксидом используют ксенон или другие современные ингаляционные анестетики, бензодиазепины заменили барбитураты и скополамин, старые анальгетики уступили место современным (фентанил, суфентанил, ремифентанил), появились новые миорелаксанты, минимально влияющие на жизненно важные органы. Нейро-вегетативное торможение стали осуществлять нейролептиками и клонидином.

trusted-source[1], [2], [3], [4], [5], [6]

Ингаляционные анестетики: место в терапии

Уходит в прошлое эра мононаркоза с помощью того или иного ингаляционного анестетика. Хотя в педиатрической практике и при небольших по объему хирургических операциях у взрослых эта методика еще практикуется. Многокомпонентная общая анестезия доминирует в анестезиологической практике с 60-х годов прошлого столетия. Роль ингаляционных анестетиков ограничивается достижением и поддержанием первого компонента - выключением сознания и поддержанием наркотического состояния в течение хирургического вмешательства. Уровень глубины анестезии должен соответствовать 1,3 МАК избранного ЛС, с учетом всех применяемых дополнительных адъювантов, влияющих на МАК. Анестезиолог должен иметь в виду, что ингаляционный компонент оказывает дозозависимое воздействие и на другие компоненты общей анестезии, такие как аналгезия, миорелаксация, нейровегетативное торможение и др.

Введение в анестезию

Вопрос о введении в анестезию сегодня, можно сказать, решен в пользу в/в анестетиков с последующим переходом на ингаляционный компонент с целью поддержания анестезии. В основе такого решения, безусловно, стоит комфорт для больного и быстрота индукции. Однако надо иметь в виду, что на переходном этапе от вводного наркоза до периода поддержания имеется несколько подводных камней, связанных с неадекватностью анестезии и, вследствие этого, реакцией организма на эндотрахеальную трубку или разрез кожи. Это часто наблюдается, когда анестезиолог использует для вводного наркоза барбитураты ультракороткого действия или гипнотики, лишенные анальгетических свойств, и не успевает насытить организм ингаляционным анестетиком или сильным анальгетиком (фентанил). Гипердинамическая реакция кровообращения, сопровождающая указанное состояние, может быть крайне опасной у пожилых больных. Предварительное введение мышечных релаксантов делает бурную ответную реакцию больного невидимой. Однако показатели мониторов фиксируют «вегетативную бурю» со стороны сердечно-сосудистой системы. Именно в этот период нередко наблюдается пробуждение пациентов со всеми негативными последствиями этого состояния, особенно если операция уже начата.

Имеется несколько вариантов предупреждения включения сознания и плавного достижения периода поддержания. Это своевременное насыщение организма ингаляционными анестетиками, позволяющими достигнуть МАК или лучше ЕДЧ5 к концу действия в/в вводного агента. Другим вариантом может быть сочетание ингаляционных анестетиков (динитроген оксид + изофлуран, севофлуран или ксенон).

Хороший эффект наблюдается при сочетании бензодиазепинов с кетамином, динитрогена оксида с кетамином. Уверенность анестезиологу придает дополнительное введение фентанила и мышечных релаксантов. Широко распространены комбинированные способы, когда ингаляционные агенты сочетаются с в/в. Наконец, применение сильных ингаляционных анестетиков севофлурана и десфлурана, имеющих низкую растворимость в крови, позволяет быстро достигнуть наркотических концентраций еще до того, как вводный анестетик перестанет действовать.

Механизм действия и фармакологические эффекты

Несмотря на то что с момента дачи первого эфирного наркоза прошло около 150 лет, механизмы наркотического действия ингаляционных анестетиков окончательно не ясны. Существующие теории (коагуляционная, липоидная, поверхностного натяжения, адсорбционная), предложенные в конце XIX и начале XX веков, не смогли раскрыть сложный механизм общей анестезии. Точно так же не ответила на все вопросы теория водных микрокристаллов дважды лауреата Нобелевской премии Л. Полинга. По мнению последнего, развитие наркотического состояния объясняется свойством общих анестетиков образовывать в водной фазе тканей своеобразные кристаллы, которые создают препятствие для перемещения катионов через мембрану клетки и тем самым блокируют процесс деполяризации и формирование потенциала действия. В последующие годы появились исследования, которые показали, что не все анестетики обладают свойством образовывать кристаллы, а те, которые обладают этим свойством, образуют кристаллы в концентрациях, превышающих клинические. В 1906 г. английский физиолог Ч. Шеррингтон высказал предположение, что общие анестетики реализуют свое специфическое действие в основном через синапсы, оказывая тормозящее влияние на синаптическую передачу возбуждения. Однако механизм угнетения возбудимости нейронов и торможения синаптической передачи возбуждения под влиянием анестетиков полностью не раскрыт. По мнению одних ученых, молекулы анестетика образуют на мембране нейрона своеобразный плащ, затрудняющий прохождение через нее ионов и тем самым препятствующий процессу деполяризации мембраны. По данным же других исследователей, анестетики изменяют функции катионовых «каналов» клеточных мембран. Очевидно, что различные анестетики неодинаково влияют на основные функциональные звенья синапсов. Одни из них тормозят передачу возбуждения преимущественно на уровне терминалей нервных волокон, другие - снижают чувствительность рецепторов мембран к медиатору или угнетают его образование. Подтверждением преимущественного действия общих анестетиков в зоне межнейронных контактов может служить антиноцицептивная система организма, которая в современном понимании представляет собой совокупность механизмов, регулирующих болевую чувствительность и оказывающих тормозящее влияние на ноцицептивную импульсацию в целом.

Концепция об изменении под влиянием наркотических веществ физиологической лабильности нейронов и особенно синапсов позволила приблизиться к пониманию того, что в каждый данный момент общей анестезии степень торможения функции различных отделов мозга оказывается неодинаковой. Такое понимание нашло подтверждение в том, что наряду с корой больших полушарий наиболее подверженной тормозящему влиянию наркотических веществ оказалась функция ретикулярной формации, что явилось предпосылкой для разработки «ретикулярной теории наркоза». Подтверждением этой теории были данные о том, что разрушение определенных зон ретикулярной формации вызывало состояние, близкое к медикаментозному сну или наркозу. На сегодняшний день сформировалось представление о том, что эффект общих анестетиков является результатом торможения рефлекторных процессов на уровне ретикулярной субстанции мозга. При этом устраняется ее восходящее активирующее влияние, что приводит к деафферентации вышележащих отделов ЦНС. При всей популярности «ретикулярной теории наркоза» она не может быть признана универсальной.

Следует признать, что в этой области сделано много. Однако все еще есть вопросы, на которые нет достоверных ответов.

Минимальная альвеолярная концентрация

Термин «минимальная альвеолярная концентрация» (МАК) был введен в 1965 г. Eger et al. как стандарт потенции (силы, мощности) анестетиков. Это МАК ингаляционных анестетиков, предотвращающая двигательную активность у 50% субъектов, которым наносят болевой стимул. МАК для каждого анестетика не статическая величина и может варьировать в зависимости от возраста пациента, температуры окружающей среды, взаимодействия с другими ЛС, наличия алкоголя и др.

Например, введение наркотических анальгетиков и седативных ЛС снижает МАК. Концептуально между МАК и средней эффективной дозой (ЕД50) можно провести параллель точно так же, как ЕД95 (отсутствие движений на болевой стимул у 95% больных) эквивалентно 1,3 МАК.

Минимальная альвеолярная концентрация ингаляционных анестетиков

  • Динитроген оксид - 105
  • Ксенон - 71
  • Гапотан - 0,75
  • Энфлуран - 1,7
  • Изофлуран - 1,2
  • Севофлуран - 2
  • Десфлуран - 6

Для достижения МАК = 1 нужны гипербарические условия.

Добавление 70% динитрогена оксида, или закиси азота (N20), к энфлурану снижает МАК последнего с 1,7 до 0,6, к галотану - с 0,77 до 0,29, к изофлурану - с 1,15 до 0,50, к севофлурану - с 1,71 до 0,66, к десфлурану - с 6,0 до 2,83. Снижают МАК, кроме причин, указанных выше, метаболитический ацидоз, гипоксия, гипотензия, а2-агонисты, гипотермия, гипонатриемия, гипоосмолярность, беременность, алкоголь, кетамин, опиоиды, мышечные релаксанты, барбитураты, бензодиазепины, анемия и др.

Не влияют на МАК следующие факторы: продолжительность анестезии, гипо- и гиперкарбия в пределах РаС02 = 21- 95 мм рт. ст., метаболитический алкалоз, гипероксия, артериальная гипертензия, гиперкалиемия, гиперосмолярность, пропранолол, изопротеренол, налоксон, аминофиллин и др.

Влияние на центральную нервную систему

Ингаляционные анестетики вызывают весьма существенные изменения на уровне ЦНС: выключение сознания, электрофизиологические нарушения, изменения церебральной гемодинамики (церебрального кровотока, потребления мозгом кислорода, давления спинномозговой жидкости и др.).

При вдыхании ингаляционных анестетиков с увеличением доз нарушается соотношение между мозговым кровотоком и потреблением мозгом кислорода. Важно иметь в виду, что этот эффект наблюдается тогда, когда церебральная сосудистая ауторегуляция интактна на фоне нормального внутричерепного артериального давления (АД) (50-150 мм рт. ст.). Увеличение церебральной вазодилатации с последующим увеличением мозгового кровотока ведет к снижению потребления мозгом кислорода. Этот эффект уменьшается или исчезает при снижении АД.

Каждый сильный ингаляционный анестетик снижает метаболизм тканей головного мозга, вызывает вазодилатацию церебральных сосудов, повышает давление спинномозговой жидкости и церебральный объем крови. Динитроген оксид умеренно увеличивает общий и регионарный мозговой кровоток, поэтому значительного повышения внутричерепного давления не происходит. Ксенон также не увеличивает внутричерепное давление, но по сравнению с 70% динитрогеном оксидом почти в 2 раза увеличивает скорость мозгового кровотока. Восстановление прежних параметров наступает сразу после прекращения подачи газа.

В бодрствующем состоянии церебральный кровоток четко коррелирует с потреблением мозгом кислорода. Если потребление снижается, то церебральный кровоток тоже снижается. Изофлуран может сохранить эту корреляционную зависимость лучше, чем другие анестетики. Повышение церебрального кровотока анестетиками имеет тенденцию к постепенной нормализации до исходного уровня. В частности, после вводного наркоза галотаном церебральный кровоток нормализуется в течение 2 ч.

Ингаляционные анестетики имеют существенное влияние и на объем спинномозговой жидкости, влияя и на ее продукцию, и на ее реабсорбцию. Так, если энфлуран повышает продукцию спинномозговой жидкости, то изофлуран не влияет практически ни на продукцию, ни на реабсорбцию. Галотан же снижает скорость продукции спинномозговой жидкости, но повышает резистентность к реабсорбции. При наличии умеренной гипокапнии менее вероятно, что изофлуран вызовет опасное повышение спинномозгового давления по сравнению с галотаном и энфлураном.

Ингаляционные анестетики оказывают существенное влияние на электроэнцефалограмму (ЭЭГ). При повышении концентрации анестетиков снижается частота биоэлектрических волн и повышается их вольтаж. При очень высоких концентрациях анестетиков могут наблюдаться зоны электрического молчания. Ксенон так же, как и другие анестетики, в концентрации 70-75% вызывает депрессию альфа- и бета-активности, снижает частоту ЭЭГ колебаний до 8-10 Гц. Вдыхание 33% ксенона в течение 5 мин для диагностики состояния мозгового кровотока вызывает целый ряд неврологических нарушений: эйфорию, головокружение, задержку дыхания, тошноту, онемение, оцепенение, тяжесть в голове. Отмечающееся в это время снижение амплитуды альфа- и бета-волн имеет преходящий характер, и ЭЭГ восстанавливается после прекращения подачи ксенона. По данным Н.Е. Бурова и соавт. (2000), отрицательных влияний ксенона на структуры мозга и его метаболизм не отмечено. В отличие от других ингаляционных анестетиков энфлуран может вызывать высокоамплитудную повторную остроконечную волновую активностью. Эту активность можно нивелировать снижением дозы энфлурана или повышением РаСОа.

Влияние на сердечно-сосудистую систему

Все сильные ингаляционные анестетики угнетают сердечно-сосудистую систему, но их гемодинамический эффект различен. Клиническим проявлением сердечно-сосудистой депрессии является гипотензия. В частности, у галотана этот эффект главным образом обусловлен снижением сократительной способности миокарда и частоты его сокращений с минимальным снижением общего сосудистого сопротивления. Энфлуран же и вызывает депрессию сократительной способности миокарда, и снижает общее периферическое сопротивление. В отличие от галотана и энфлурана эффект изофлурана и десфлурана главным образом обусловлен снижением сосудистого сопротивления и является дозозависимым. При увеличении концентрации анестетиков до 2 МАК АД может снижаться на 50%.

Негативный хронотропный эффект свойственен галотану, тогда как энфлуран чаще вызывает тахикардию.

Данные экспериментальных исследований Skovster al., 1977, показали, что изофлуран угнетает и вагальные, и симпатические функции, однако в связи с тем, что вагальные структуры угнетаются в большей степени, наблюдается учащение ритма сердца. Следует указать, что положительный хронотропный эффект чаще наблюдается у молодых субъектов, а у пациентов после 40 лет его выраженность уменьшается.

Сердечный выброс уменьшается главным образом за счет уменьшения ударного объема при использовании галотана и энфлурана и в меньшей степени - изофлурана.

Наименьшее влияние на ритм сердца оказывает галотан. Десфлуран вызывает наиболее выраженную тахикардию. В связи с тем, что АД и сердечный выброс или снижаются, или остаются стабильными, уменьшается работа сердца и потребление миокардом кислорода на 10-15%.

Динитроген оксид влияет на гемодинамику вариабельно. У пациентов с заболеваниями сердца динитроген оксид, особенно в сочетании с опиоидными анальгетиками, вызывает гипотензию и уменьшение сердечного выброса. Этого не происходит у молодых субъектов с нормально функционирующей сердечно-сосудистой системой, где активация симпатоадреналовой системы нивелирует депрессивный эффект динитрогена оксида на миокард.

Влияние динитрогена оксида на малый круг также вариабельно. У больных с повышенным давлением в легочной артерии добавление динитрогена оксида может еще больше увеличить его. Интересно отметить, что снижение легочного сосудистого сопротивления с помощью изофлурана меньше, чем снижение системного сосудистого сопротивления. Севофлуран влияет на гемодинамику в меньшей степени, чем изофлуран и десфлуран. Согласно данным литературы, ксенон благоприятно действует на сердечно-сосудистую систему. Отмечается тенденция к брадикардии и некоторое повышение АД.

Анестетики оказывают прямой эффект на печеночную циркуляцию и на сосудистое сопротивление в печени. В частности, если изофлуран вызывает вазодилатацию сосудов печени, то галотан не обладает этим эффектом. Оба снижают тотальный печеночный кровоток, но потребность в кислороде меньше при изофлурановой анестезии.

Добавление динитрогена оксида к галотану способствует дальнейшему снижению чревного кровотока, а изофлуран может препятствовать ренальной и чревной вазоконстрикции, связанной с соматической или висцеральной нервной стимуляцией.

Влияние на ритм сердца

Сердечные аритмии могут наблюдаться более чем у 60% больных в условиях ингаляционной анестезии и операции. Энфлуран, изофлуран, десфлуран, севофлуран, динитроген оксид и ксенон в меньшей степени создают условия для возникновения нарушений ритма, чем галотан. Аритмии, связанные с гиперадреналинемией, в условиях галотановой анестезии выражены у взрослых в большей степени, чем у детей. Аритмиям способствует гиперкарбия.

Атриовентрикулярный узловой ритм нередко наблюдается при ингаляции практически всех анестетиков, пожалуй, за исключением ксенона. Особенно это выражено при анестезии энфлураном и динитрогеном оксидом.

Коронарная ауторегуляция обеспечивает эквилибриум между коронарным кровотоком и потребностью миокарда в кислороде. У больных с ишемической болезнью сердца (ИБС) в условиях изофлурановой анестезии коронарный кровоток не уменьшается, несмотря на снижение системного АД. Если же гипотензия вызывается изофлураном, то при наличии экспериментального стеноза коронарной артерии у собак наступает выраженная ишемия миокарда. Если же гипотензию удается предотвратить, то изофлуран не вызывает синдрома обкрадывания .

В то же время динитроген оксид, добавленный к сильному ингаляционному анестетику, может нарушать распределение коронарного кровотока.

Почечный кровоток в условиях общей ингаляционной анестезии не меняется. Этому способствует ауторегуляция, которая снижает общее периферическое сопротивление почечных сосудов, если снижается системное АД. Скорость гломерулярной фильтрации падает из-за снижения АД, и, как результат, продукция мочи уменьшается. При восстановлении АД все возвращается к исходному уровню.

Влияние на дыхательную систему

Все ингаляционные анестетики оказывают депрессивное влияние на дыхание. С увеличением дозы дыхание становится поверхностным и частым, снижается объем вдоха, повышается напряжение углекислоты в крови. Однако не все анестетики увеличивают частоту дыхания. Так, изофлуран только в присутствии динитрогена оксида может приводить к учащению дыхания. Ксенон также урежает дыхание. При достижении 70-80% концентрации дыхание урежается до 12-14 в мин. При этом надо иметь в виду, что ксенон является самым тяжелым газом из всех ингаляционных анестетиков и имеет коэффициент плотности 5,86 г/л. В этой связи добавление наркотических анальгетиков во время ксеноновой анестезии, когда больной дышит самостоятельно, не показано. Согласно данным Tusiewicz et al., 1977, эффективность дыхания на 40% обеспечивается межреберными мышцами и на 60% - диафрагмой. Ингаляционные анестетики оказывают дозозависимое депрессивное действие на указанные мышцы, которое существенно возрастает при комбинации с наркотическими анальгетиками или ЛС, обладающими центральным миорелаксирующим действием. При ингаляционной анестезии, особенно когда концентрация анестетика достаточно высокая, возможно наступление апноэ. Причем разница между МАК и дозой, вызываемой апноэ, у анестетиков разная. Наименьшая - у энфлурана. Ингаляционные анестетики оказывают однонаправленное действие на тонус воздухоносных путей - они снижают сопротивление дыхательных путей вследствие бронходилатации. Этот эффект у галотана выражен в большей степени, чем у изофлурана, энфлурана и севофлурана. Поэтому можно прийти к заключению, что все ингаляционные анестетики эффективны у больных с бронхиальной астмой. Однако их эффект обусловлен не блокированием выделения гистамина, а предупреждением бронхоконстрикторного эффекта последнего. Следует помнить также о том, что ингаляционные анестетики в некоторой степени ингибируют мукоцилиарную активность, что вместе с такими отрицательными факторами, как нахождение эндотрахеальной трубки и ингаляция сухих газов, создает условия для возникновения послеоперационных бронхолегочных осложнений.

Влияние на функцию печени

В связи с достаточно высоким (15-20%) метаболизмом галотана в печени мнение о возможности гепатотоксического эффекта последнего существовало всегда. И хотя в литературе были описаны единичные случаи повреждения печени, опасность эта имела место. Поэтому синтез последующих ингаляционных анестетиков имел главную цель - уменьшить печеночный метаболизм новых галогенсодержащих ингаляционных анестетиков и свести гепатотоксический и нефротоксический эффекты к минимуму. И если у метоксифлурана процент метаболизации составляет 40-50%, у галотана - 15-20%, то у севофлурана - 3%, энфлурана - 2%, изофлурана - 0,2% и десфлурана - 0,02%. Приведенные данные свидетельствуют о том, что десфлуран не обладает гепатотоксическим эффектом, у изофлурана он только теоретически возможен, а у энфлурана и севофлурана он крайне низок. На миллион анестезий севофлураном, проведенных в Японии, описано только два случая повреждения печени.

trusted-source[7], [8], [9], [10], [11], [12]

Влияние на кровь

Ингаляционные анестетики оказывают влияние на гематопоэз, клеточные элементы и коагуляцию. В частности, тератогенное и миелодепрессивное действие динитрогена оксида хорошо известно. Длительная экспозиция динитрогена оксида вызывает анемию из-за ингибиции фермента метионинсинтетазы, который включается в метаболизм витамина B12. Мегалобластические изменения в костном мозге были обнаружены даже после 105-минутной ингаляции клинической концентрации динитрогена оксида у тяжелых больных.

Имеются указания, что ингаляционные анестетики влияют на тромбоциты и тем самым способствуют кровоточивости либо влияя на гладкую мускулатуру сосудов, либо оказывая воздействие на функцию тромбоцитов. Есть данные о том, что галотан снижает их способность к агрегации. Умеренное повышение кровоточивости отмечено при анестезии галотаном. Этот феномен отсутствовал при ингаляции изофлурана и энфлурана.

trusted-source[13], [14], [15],

Влияние на нервно-мышечную систему

Давно известно, что ингаляционные анестетики потенцируют действие миорелаксантов, хотя механизм этого эффекта не ясен. В частности, выявлено, что изофлуран потенцирует сукцинилхолиновый блок в большей степени, чем галотан. Вместе с тем отмечено, что ингаляционные анестетики вызывают большую степень потенцирования недеполяризующих миорелаксантов. Наблюдается определенная разница между эффектами ингаляционных анестетиков. Так, например, изофлуран и энфлуран потенцируют нервно-мышечную блокаду большей протяженности, чем галотан и севофлуран.

Влияние на эндокринную систему

Во время анестезии уровень глюкозы повышается либо вследствие снижения секреции инсулина, либо из-за уменьшения способности периферических тканей утилизировать глюкозу.

Из всех ингаляционных анестетиков севофлуран сохраняет концентрацию глюкозы на исходном уровне, и поэтому именно севофлуран рекомендуют использовать у больных диабетом.

Имевшее место предположение, что ингаляционные анестетики и опиоиды вызывают секрецию антидиуретического гормона, не получило подтверждения при более точных методах исследований. Было установлено, что значительный выброс антидиуретического гормона является частью стресс-ответа на хирургическую стимуляцию. Мало влияют ингаляционные анестетики и на уровень ренина и серотонина. В то же время установлено, что галотан существенно снижает уровень тестостерона в крови.

Отмечено, что ингаляционные анестетики во время индукции больше влияют на выброс гормонов (адренокортикотропные, кортизол, катехоламины), чем ЛС для в/в анестезии.

Галотан в большей степени, чем энфлуран, повышает уровень катехоламинов. В связи с тем что галотан повышает чувствительность сердца к адреналину и способствует аритмиям, то применение энфлурана, изофлурана и севофлурана более показано при удалении феохромоцитомы.

Влияние на матку и плод

Ингаляционные анестетики вызывают миометральную релаксацию и тем самым увеличивают перинатальную кровопотерю. По сравнению с анестезией динитрогеном оксидом в сочетании с опиоидами кровопотеря после галотановой, энфлурановой и изофлурановой анестезии существенно выше. Однако использование небольших доз 0,5% галотана, 1% энфлурана и 0,75% изофлурана как дополнения к наркозу динитрогеном оксидом и кислородом, с одной стороны, предупреждает пробуждение на операционном столе, с другой - не влияет существенно на кровопотерю.

Ингаляционные анестетики проникают через плаценту и оказывает влияние на плод. В частности, 1 МАК галотана вызывает гипотензию у плода даже при минимальной гипотензии и тахикардии у матери. Однако эта гипотензия у плода сопровождается снижением периферического сопротивления, и в результате периферический кровоток остается на достаточном уровне. Тем не менее более безопасно для плода использовать изофлуран.

trusted-source[16], [17], [18], [19], [20], [21], [22], [23]

Фармакокинетика

Поступление газообразного или парообразного анестетика непосредственно в легкие пациента способствует быстрой диффузии ЛС из легочных альвеол в артериальную кровь и далее его распределению по жизненно важным органам с созданием в них определенной концентрации ЛС. Выраженность эффекта в конечном итоге зависит от достижения терапевтической концентрации ингаляционного анестетика в головном мозге. Так как последний является исключительно хорошо перфузируемым органом, парциальное давление ингаляционного агента в крови и мозге выравнивается достаточно быстро. Обмен ингаляционного анестетика через альвеолярную мембрану происходит очень эффективно, поэтому парциальное давление ингаляционного агента в крови, циркулирующей через малый круг, очень близко к тому, что находят в альвеолярном газе. Таким образом, парциальное давление ингаляционного анестетика в тканях головного мозга мало отличается от альвеолярного парциального давления того же агента. Причиной того, почему пациент не засыпает сразу после начала ингаляции и не просыпается немедленно после ее прекращения, является главным образом растворимость ингаляционного анестетика в крови. Проникновение ЛС в место своего действия можно представить в виде следующих этапов:

  • испарение и поступление в воздухоносные пути;
  • переход через альвеолярную мембрану и поступление в кровь;
  • переход из крови через тканевую мембрану в клетки головного мозга и других органов и тканей.

Скорость поступления ингаляционного анестетика из альвеол в кровь зависит не только от растворимости анестетика в крови, но и от альвеолярного кровотока и разницы парциальных давлений альвеолярного газа и венозной крови. Прежде чем достигнуть наркотической концентрации, ингаляционный агент проходит путь: альвеолярный газ -> кровь -> мозг -> мышцы -> жир, т.е. от хорошо васкуляризированных органов и тканей к плохо васкуляризированным тканям.

Чем больше коэффициент кровь/газ, тем выше растворимость ингаляционного анестетика (табл. 2.2). В частности, очевидна что если у галотана коэффициент расть римости кровь/газ 2,54, а десфлурана 0,42, то скорость наступления вводного наркоза у десфлурана в 6 раз выше, чем у галотана. Если же сравнить последний с метоксифлураном, у которого коэффициент кровь/газ равен 12, то становится понятным, почему метоксифлуран не годится для вводного наркоза.

Количество анестетика, которое подвергается печеночному метаболизму, существенно меньше, чем выдыхается через легкие. Процент метаболизации метоксифлурана составляет 40-50%, галотана - 15-20%, севофлурана - 3%, эн-флурана - 2%, изофлурана - 0,2%, а десфлурана - 0,02%. Диффузия анестетиков через кожу минимальна.

Когда подача анестетика прекращается, начинается его элиминация по принципу, противоположному индукции. Чем меньше коэффициент растворимости анестетика в крови и тканях, тем быстрее пробуждение. Быстрой элиминации анестетика способствует высокий поток кислорода и соответственно высокая альвеолярная вентиляция. Элиминация динитрогена оксида и ксенона проходит так быстро, что может возникнуть диффузионная гипоксия. Последнюю можно предотвратить ингаляцией 100% кислорода в течение 8- 10 мин под контролем процентного содержания анестетика в выдуваемом воздухе. Разумеется, что скорость пробуждения зависит от длительности применения анестетика.

Период выведения

Выход из анестезии в современной анестезиологии достаточно предсказуемый, если анестезиолог обладает достаточными знаниями в области клинической фармакологии применяемых средств. Скорость пробуждения зависит от целого ряда факторов: дозы ЛС, его фармакокинетики, возраста пациента, длительности анестезии, кровопотери, количества перелитых онкотических и осмотичеческих растворов, температуры пациента и окружающей среды и т.д. В частности, разница в скорости пробуждения при применении десфлурана и севофлурана в 2 раза быстрее, чем при применении изофлурана и галотана. Последние ЛС имеют также преимущество перед эфиром и метоксифлураном. И все же самые управляемые ингаляционные анестетики действуют дольше, чем некоторые в/в анестетики, например пропофол, и пациенты пробуждаются в течение 10-20 мин после прекращения подачи ингаляционного анестетика. Разумеется, в расчет надо брать все ЛС, которые вводились в течение анестезии.

Поддержание анестезии

Поддержание анестезии можно проводить с помощью только ингаляционного анестетика. Однако многие анестезиологи все же предпочитают добавлять адъюванты на фоне ингаляционного агента, в частности анальгетики, релаксанты, гипотензивные средства, кардиотоники и т.д. Имея в своем арсенале ингаляционные анестетики с разными свойствами, анестезиолог может выбрать агент с нужными свойствами и использовать не только его наркотические свойства, но и, например, гипотензивный или бронходилатирующий эффект анестетика. В нейрохирургии, например, отдают предпочтение изофлурану, который сохраняет зависимость калибра церебральных сосудов от напряжения углекислоты, снижает потребление кислорода мозгом, благоприятно влияет на динамику спинномозговой жидкости, снижая ее давление. Надо иметь в виду, что в период поддержания анестезии ингаляционные анестетики способны пролонгировать действие недеполяризующих миорелаксантов. В частности, при энфлурановой анестезии потенцирование миорелаксирующего действия векурония гораздо сильнее, чем при использовании изофлурана и галотана. Поэтому дозы релаксантов следует заранее уменьшать, если используются сильные ингаляционные анестетики.

Противопоказания

Общим для всех ингаляционных анестетиков противопоказанием является отсутствие специфических технических средств для точной дозировки соответствующего анестетика (дозиметров, испарителей). Относительным противопоказанием для многих анестетиков является выраженная гиповолемия, возможность возникновения злокачественной гипертермии и внутричерепная гипертензия. В остальном противопоказания зависят от свойств ингаляционных и газообразных анестетиков.

Динитроген оксид и ксенон отличаются высокой диффузионной способностью. Риск заполнения газами замкнутых полостей ограничивает их применение у больных с закрытым пневмотораксом, воздушной эмболией, острой кишечной непроходимостью, при нейрохирургических операциях (пневмоцефалия), пластических операциях на барабанной перепонке и др. Диффузия этих анестетиков в манжетку эндотрахеальной трубки повышает в ней давление и может вызывать ишемию слизистой трахеи. Не рекомендуется применять динитроген оксид в постперфузионном периоде и при операциях у больных с пороками сердца со скомпрометированной гемодинамикой вследствие кардиодепрессивного эффекта у этой категории больных.

Не показан динитроген оксид и у больных с легочной гипертензией, т.к. он повышает легочно-сосудистое сопротивление. Не следует применять динитроген оксид у беременных во избежание тератогенного эффекта.

Противопоказанием для применения ксенона является необходимость применять гипероксические смеси (сердечная и легочная хирургия).

Для всех других (кроме изофлурана) анестетиков противопоказанием являются состояния, сопровождающиеся повышением внутричерепного давления. Тяжелая гиповолемия является противопоказанием к назначению изофлурана, севофлурана, десфлурана и энфлурана из-за наличия у них вазодилатирующего действия. Галотан, севофлуран, десфлуран и энфлуран противопоказаны при риске развития злокачественной гипертермии.

Галотан вызывает депрессию миокарда, что ограничивает его применение у больных с тяжелыми заболеваниями сердца. Не следует использовать галотан у больных с дисфункцией печени неясного генеза.

Болезни почек, эпилепсия являются дополнительными противопоказаниями для энфлурана.

trusted-source[24], [25], [26]

Переносимость и побочные эффекты

Динитроген оксид, окисляя необратимо атом кобальта в витамине Bi2, ингибирует активность В12-зависимых ферментов, таких как метионинсинтетазу, необходимую для образования миелина, и тимиделат-синтетазу, необходимую для синтеза ДНК. Кроме того, длительная экспозиция динитрогена оксида вызывает депрессию костного мозга (мегалобластную анемию) и даже неврологический дефицит (периферическую нейропатию и фуникулярный миелоз).

В связи с тем что галотан окисляется в печени до своих главных метаболитов - трифторуксусной кислоты и бромида, возможны послеоперационные дисфункции печени. Хотя галотановый гепатит встречается редко (1 случай на 35 000 га-лотановых анестезий), об этом анестезиолог должен помнить.

Установлено, что иммунные механизмы играют важную роль в гепатотоксическом эффекте галотана (эозинофилия, сыпь). Под влиянием трифторуксусной кислоты микросомальные белки печени играют роль триггерного антигена, который запускает аутоиммунную реакцию.

Среди побочных эффектов изофлура-на следует упомянуть умеренную бета-адренергическую стимуляцию, увеличение кровотока в скелетных мышцах, снижение общего периферического сопротивления сосудов (ОПСС) и АД (Д.Э. Морган и М.С. Михаил, 1998). Депрессивное влияние изофлуран оказывает и на дыхание, причем в несколько большей степени, чем другие ингаляционные анестетики. Изофлуран снижает печеночный кровоток и диурез.

Севофлуран подвергается деградации с помощью натронной извести, которой заполняют абсорбер наркозно-дыхательного аппарата. При этом концентрация конечного продукта «А» возрастает, если севофлуран соприкасается с сухой натронной известью в условиях закрытого контура при низком газотоке. При этом риск развития тубулярного некроза почек существенно возрастает.

Токсический эффект того или иного ингаляционного анестетика зависит от процента метаболизации ЛС: чем он больше, тем ЛС хуже и токсичнее.

Из побочных эффектов энфлурана следует упомянуть об угнетении сократимости миокарда, снижении АД и потребления кислорода, увеличении частоты сердечных сокращений (ЧСС) и ОПСС. Кроме того, энфлуран сенсибилизирует миокард к катехоламинам, что следует иметь в виду и не применять эпинефрин в дозе 4,5 мкг/кг. Из других побочных эффектов укажем на депрессию дыхания при подаче 1 МАК ЛС - рС02 при самостоятельном дыхании возрастает до 60 мм рт. ст. Для устранения внутричерепной гипертензии, вызванной энфлураном, нельзя применять гипервентиляцию, особенно если подается высокая концентрация ЛС, ибо может развиться эпилептиформный припадок.

Побочные эффекты анестезии ксеноном наблюдаются у лиц, имеющих пристрастие к алкоголю. В начальном периоде наркоза у них наблюдается выраженная психомоторная активность, нивелируемая введением седативных средств. Кроме того, возможно появление синдрома диффузионной гипоксии вследствие быстрой элиминации ксенона и заполнения им альвеолярного пространства. Для предупреждения этого явления необходимо после отключения ксенона в течение 4- 5 мин вентилировать легкие больного кислородом.

В клинических дозах галотан может вызывать депрессию миокарда, особенно у больных с заболеваниями сердечно-сосудистой системы.

Взаимодействие

В период поддержания анестезии ингаляционные анестетики способны пролонгировать действие недеполяризующих миорелаксантов, существенно уменьшая их расход.

Из-за слабых анестетических свойств динитроген оксид, как правило, применяют в сочетании с другими ингаляционными анестетиками. Это сочетание позволяет уменьшить концентрацию второго анестетика в дыхательной смеси. Широко известны и популярны сочетания динитрогена оксида с галотаном, изофлураном, эфиром, циклопропаном. Для усиления анальгетического эффекта динитроген оксид сочетают с фентанилом и другими анестетиками. Анестезиологу следует знать еще об одном феномене, когда применение высокой концентрации одного газа (например, динитрогена оксида) облегчает повышение альвеолярной концентрации другого анестетика (например, галотана). Этот феномен получил название вторичного газового эффекта. При этом повышаются вентиляция (особенно газоток в трахее) и концентрация анестетика на уровне альвеол.

В связи с тем что многие анестезиологи применяют комбинированные методы ингаляционной анестезии, когда парообразные ЛС сочетаются с динитрогеном оксидом, важно знать гемодинамические эффекты этих сочетаний.

В частности, при добавлении динитрогена оксида к галотану снижается сердечный выброс, в ответ активируется симпатоадреналовая система, ведущая к увеличению сосудистого сопротивления и повышению АД. При добавлении динитрогена оксида к энфлурану происходит небольшое или несущественное снижение АД и сердечного выброса. Динитроген оксид в сочетании с изофлураном или десфлураном на уровне МАК анестетиков приводит к некоторому увеличению АД, связанного главным образом с повышением ОПСС.

Динитроген оксид в сочетании с изофлураном существенно увеличивает коронарный кровоток на фоне существенного снижения потребления кислорода. Это свидетельствует о нарушении механизма ауторегуляции коронарного кровотока. Аналогичная картина наблюдается при добавлении динитрогена оксида к энфлурану.

Галотан при сочетании с бета-адреноблокаторами и антагонистами кальция усиливает депрессию миокарда. Осторожно нужно сочетать применение ингибиторов моноаминоксидазы (МАО) и трициклических антидепрессантов с галотаном из-за развития нестабильного АД и аритмий. Опасно сочетание галотана с аминофиллином вследствие возникновения тяжелых желудочковых аритмий.

Изофлуран хорошо сочетается с дини-трогеном оксидом и анальгетиками (фентанил, ремифентанил). Севофлуран хорошо сочетается с анальгетиками. Не сенсибилизирует миокард к аритмогенному действию катехоламинов. При взаимодействии с натронной известью (поглотитель СО2) севофлуран разлагается с образованием нефротоксического метаболита (соединение А-олефин). Это соединение накапливается при высокой температуре дыхательных газов (низкопоточная анестезия), в связи с чем не рекомендуется использовать поток свежего газа менее 2 л в мин.

В отличие от некоторых других ЛС десфлуран не вызывает сенсибилизации миокарда к аритмогенному эффекту катехоламинов (эпинефрин можно применять до 4,5 мкг/кг).

Хорошим взаимодействием с анальгетиками, миорелаксантами, нейролептиками, седативными ЛС и ингаляционными анестетиками обладает и ксенон. Указанные средства потенцируют действие последнего.

Внимание!

Для простоты восприятия информации, данная инструкция по применению препарата "Ингаляционные анестетики" переведена и изложена в особой форме на основании официальной инструкции по медицинскому применению препарата. Перед применением ознакомьтесь с аннотацией, прилагающейся непосредственно к медицинскому препарату.

Описание предоставлено с ознакомительной целью и не является руководством к самолечению. Необходимость применения данного препарата, назначение схемы лечения, способов и дозы применения препарата определяется исключительно Лечащим врачом. Самолечение опасно для Вашего здоровья.

Сообщите нам об ошибке в этом тексте:
Просто нажмите кнопку "Отправить отчет" для отправки нам уведомления. Так же Вы можете добавить комментарий.